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Assuming that the sediment flux in the Exner equation can be linearly related to the
local bed slope, we establish a one-dimensional model for the bed-load transport of
sediment in a coastal-plain depositional system, such as a delta and a continental
margin. The domain of this model is defined by two moving boundaries: the
shoreline and the alluvial–bedrock transition. These boundaries represent fundamental
transitions in surface morphology and sediment transport regime, and their trajectories
in time and space define the evolution of the shape of the sedimentary prism. Under
the assumptions of fixed bedrock slope and sea level the model admits a closed-form
similarity solution for the movements of these boundaries. A mapping of the solution
space, relevant to field scales, shows two domains controlled by the relative slopes of
the bedrock and fluvial surface: one in which changes in environmental parameters
are mainly recorded in the upstream boundary and another in which these changes are
mainly recorded in the shoreline. We also find good agreement between the analytical
solution and laboratory flume experiments for the movements of the alluvial–bedrock
transition and the shoreline.

1. Introduction
Coastal areas such as deltas and continental margins are composites of several

primary sedimentary environments: at a minimum, a depositional fluvial region and
an offshore region (figure 1). The latter may include sub-regions (e.g. wave-dominated
shelf, mass-flow-dominated slope). The depositional fluvial region typically terminates
upstream in a transition to a bedrock fluvial region. The boundaries between these
regions, which are often readily visible on topographic maps, represent fundamental
qualitative transitions in the processes by which sediment is transported. In fact the
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Figure 1. Schematic of sediment basin problem. (Note the seaward direction is
assigned positive.)

shape, large-scale structure and long-term evolution of coastal sedimentary systems
are the result of the complex interplay of the different transport regions, and the
boundaries separating them are moving boundaries – internal boundaries whose
location must be determined as part of the solution to the overall morphological
evolution problem (Marr et al. 2000; Swenson et al. 2000; Voller, Swenson & Paola
2004; Kim & Muto 2007; Swenson & Muto 2007). The classical moving boundary
problem involves the tracking of the solid–liquid interface during the melting of
ice and is known as the Stefan problem (Crank 1984). The first application of
moving boundary models to morphodynamics was by Swenson et al. (2000). These
authors used an analogy between heat and sediment diffusive transport to develop
a generalized Stefan-like model to describe the movement on planetary time scales
of the shoreline in a sedimentary continental margin under varying conditions of
sediment influx, sea level and tectonic subsidence. In the limit of constant bedrock
slope (no subsidence) and sea level, Voller et al. (2004) developed a closed-form
similarity solution for the Swenson model which tracks the shoreline movement in
a one-dimensional domain driven by a prescribed sediment flux. This solution has
common elements with the classic Neumann similarity solution of the Stefan one-
phase melting problem (Crank 1984). The key differences in the model presented
in Voller et al. (2004) from the classic solution are (i) a specified flux at the origin
x = 0 and (ii) a spatially variable latent heat (ocean depth). The ideas in Voller
et al. (2004) have recently been used by Capart, Bellal & Young (2007) and Lai &
Capart (2007) to develop analytical solutions for a more extensive solution domain,
extending from the alluvial–bedrock transition (the upstream end of a sediment
prism developed over the non-erodible bedrock basement) located at x = s1(t) < 0
through to the shoreline (the sediment–water interface) located at x = s2(t) > 0. These
authors essentially developed two similarity solutions; one solves for the movement
of the alluvial–bedrock transition, s1, in the upstream direction when the downstream
condition is set at s2 → ∞; the other solves for the downstream (progradation) of the
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shoreline, s2, when the upstream condition is set at s1 → ∞. There is, however, no need
to look at the limit settings of the upstream and downstream boundary conditions. It
is generally accepted that the geometry of modern river deltas resembles a triangular
prism in longitudinal section, superimposed upon a relatively flat basement profile
(Posamentier et al. 1992). These domain transitions of the coastal prism are typically
marked by changes in surface slope and/or grain size. A general treatment for this
problem is to construct a transient model with the initial setting of s1 = s2 = 0 and
allow for the subsequent downstream movement of the shoreline in the positive
x-direction and the upstream movement of the alluvial–bedrock transition in the
negative x-direction. As noted by Parker & Muto (2003), an interesting feature of
this case is that it simultaneously admits two moving boundaries: the shoreline
and alluvial–bedrock transition. This feature is found in other systems, notably the
liquidus and eutectic fronts in the solidification of binary eutectic alloys (Worster 1986;
Voller 1997). In terms of the sediment problem, Parker & Muto (2003) developed a
basic numerical scheme to track the evolution of the moving boundaries. In recent
attempts to track these boundaries Swenson & Muto (2007) presented a refined
numerical treatment based on a Landau front-fixing approach (Crank 1984), and
Kim & Muto (2007) employed a geometric mass balance model. To date, however,
no closed analytical solution of the two moving boundaries model based on the
diffusive transport model in Swenson et al. (2000) has been presented in the literature.
The objective of this paper is to develop such a solution, examine its implications
for response of coastal prisms to imposed changes and compare the solutions with
measurements from flume experiments.

2. Governing equations
In the problem at hand, we identify two regions, a sub-aerial fluvial region upstream

of the shoreline and a submarine offshore region. As noted above, the depositional
fluvial region, which can be referred to as a fluvial plain, is bounded upstream by
an alluvial–bedrock transition and downstream by the shoreline. Typically this plain
can extend over 10 km or even 100 km. At a given instant of time the shoreline
boundary may be quite irregular; e.g. at channel and river mouths, deltas will grow
radially ahead of the surrounding shoreline. On large time scales, however, due
to avulsion (repositioning of channels) events such features can be averaged out.
Hence it is reasonable, to first order, to represent the evolution of the system by the
one-dimensional longitudinal section shown in figure 1.

The mechanism of transport of sediment in each of the domains in figure 1 is
significantly different. In the sub-aerial fluvial region the sediment is transported
through the channel system primarily as bed load; i.e. sediment particles move in
a layer along the channel beds via modes such as shear-stress-induced saltation.
The downstream decrease in slope in this region results in a reduction in the bed
shear stress, leading to a deposition of sediment in the channel. On non-channelized
portions of the fluvial region sediment is deposited by flood events and at larger
time scales by channel avulsion. In contrast, in the offshore region sediment transport
primarily occurs by slope failure (avalanching) – which may induce gravity currents –
in addition to transport as suspended load driven by wind, wave and tide forces
(Sommerfield et al. 2007).

Using figure 1 as a reference, a suitable governing sediment transport equation
is derived by considering the deposition of a sediment prism on to a non-erodible
bedrock surface set at constant slope β . At time t = 0, with no sediment deposited,
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the sea level intersects the bedrock surface at x = 0. To retain some generality we
initially assume that the bedrock surface undergoes a uniform subsidence or uplift
– i.e. there is no spatial variation in subsidence/uplift rate. In this way, geometric
changes in the domain are defined by the rise or fall of sea level relative to the
background subsidence/uplift. At times t > 0, the sediment prism starts to grow at
x = 0 by a steady sediment unit flux q0 (volumetric sediment bed transport per
unit width and time) introduced at the far field upstream boundary and bypassed
over the bedrock basement to the sediment prism. Note the unit flux accounts
for the bed porosity n; i.e. if qm is the mass per width and time at a point, the
unit flux at that point is q = qm/ρs(1 − n), where ρs is the density of the sediment.
The sediment prism is characterized by its height h(x, t) above the current sea
level z = �(t). At some time t > 0 (figure 1), the sediment prism consists of two
parts: (i) the sediment, contained between the shoreline x = s2(t) > 0 moving in the
positive x-direction (always defined to be seaward), and the alluvial–bedrock transition
x = s1(t) < 0 moving in the negative x-direction (landward); (ii) a submarine sediment
wedge deposited beyond the shoreline x = s2(t) > 0. Following the arguments first
made by Paola, Heller & Angevine (1992) and elaborated in the Appendix, we assume
that the transport of the sediment over the sub-aerial fluvial surface is described by
the diffusive flux

q = −ν
∂h

∂x
, (2.1)

where the diffusivity ν is, in general, a function of the characteristic sediment grain
diameter d and the time-averaged water unit discharge qw over the fluvial surface
(Swenson et al. 2000). In the Appendix we discuss the validity of a linear diffusion
model and develop forms for ν applicable to field and experimental scenarios. In the
submarine domain, we assume that the time and magnitude scales of slope evolution
are small compared to those in the fluvial system. In this way, the slope of the foreset
sediment wedge can be assumed to have a constant angle of repose α (Swenson et al.
2000; Voller et al. 2004). These transport behaviours can be incorporated into the
Exner sediment balance equation (Paola & Voller 2005) to arrive at the following
governing transport equation:

∂h

∂t
= ν

∂2h

∂x2
, s1(t) � x � s2(t). (2.2)

The initial conditions are �(0) = h(x, 0) = 0. The appropriate boundary conditions are

h|x=s1(t) = −βs1(t), (2.3a)

h|x=s2(t) = �(t), (2.3b)

ν
∂h

∂x

∣∣∣∣
x=s1(t)

= −q0, (2.3c)

ν
∂h

∂x

∣∣∣∣
x=s2(t)

= −βs2 + �

α − β

(
α

ds2

dt
+

d�

dt

)
. (2.3d)

The first two conditions fix the sediment elevation to coincide with that of the
bedrock basement at the alluvial–bedrock transition x = s1(t) (2.3b) and with the
current sea level at the shoreline x = s2(t) (2.3c). The third condition (2.3d) sets
the alluvial–bedrock transition to be the point at which the fluvial sediment flux
matches the input flux; upstream of this transition the sediment is transported over
the rock basement without either erosion or deposition. The last condition (2.3d),
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initially derived by Swenson et al. (2000), is essentially a statement of the mass
balance at the shoreline; the flux of sediment arriving at the shoreline is balanced
by the requirements of maintaining the geometry of the submarine sediment wedge,
compensating for sea-level rise/fall and moving the shoreline forward.

3. The similarity solution
We develop a similarity solution of (2.2) and (2.3) under the condition that the sea

level remains fixed at �(t) = 0. The development of this solution essentially follows the
approach previously used by Voller et al. (2004) and Capart and co-workers (Capart
et al. 2007; Lai & Capart 2007). A key feature in this case, however, is that the
resulting solution allows for the simultaneous existence of two moving boundaries,
the shoreline s2(t) and the alluvial–bedrock transition s1(t); the previous solutions
(e.g. Voller et al. 2004; Capart et al. 2007; Lai & Capart 2007) allow for only a single
moving boundary. On setting the movement of the alluvial–bedrock transition (ab)
and the shoreline (sh) to be respectively

s1 = −2λab(νt)1/2, (3.1a)

s2 = 2λsh(νt)1/2, (3.1b)

introducing the similarity variable

ξ =
x

2(νt)1/2
(3.2)

and scaling the sediment height by

η =
h

2(νt)1/2
(3.3)

(2.2) and (2.3) reduce to the ordinary differential equation

1

2

d2η

dξ 2
+ ξ

dη

dξ
− η = 0, −λab � ξ � λsh, (3.4)

with

η|ξ=−λab
= βλab, (3.5a)

η|ξ=λsh
= 0, (3.5b)

ν
dη

dξ

∣∣∣∣
ξ=−λab

= −q0, (3.5c)

dη

dξ

∣∣∣∣
ξ=λsh

= −2γ λ2
sh. (3.5d)

In (3.5d) the compound slope

γ =
αβ

α − β
(3.6)

is defined as the effective foreset slope; the product of this slope with the shoreline
position s2(t) provides the water depth at the toe of the submarine sediments. The
solution of (3.4), satisfying conditions (3.5b) and (3.5c), is

η(ξ ) =
q0

ν

(
λsh

(
e−ξ 2

+ π
1
2 ξ (erf(ξ ) + erf(λab))

e−λ2
sh + π

1
2 λsh(erf(λab) + erf(λsh))

)
− ξ

)
, (3.7)
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where erf(x) = (2/
√

π)
∫ x

0
e−t2dt is the error function. Using (3.7) in the remaining two

boundary conditions, (3.5a) and (3.5d), we obtain nonlinear equations in the moving
boundary constants λab and λsh in (3.1):

Rabe
−λ2

sh

e−λ2
sh + π

1
2 λsh(erf(λab) + erf(λsh))

= 2λ2
shRsh, (3.8a)

Rabe
−λ2

ab

e−λ2
sh + π

1
2 λsh(erf(λab) + erf(λsh))

=
λab

λsh

(1 − Rab), (3.8b)

where the shoreline slope ratio Rsh = γ /β = α/α − β is the ratio of the effective foreset
slope (3.6) to the bedrock slope, and the alluvial–bedrock slope ratio Rab = q0/νβ

is the ratio of the fluvial to bedrock slopes at the alluvial–bedrock transition. Note
that the physical nature of the problem constrains Rsh � 1 and 0 <Rab < 1. Solving
the system (3.8) for λsh and λab provides for simultaneous tracking of the shoreline
s2(t) = 2λsh(νt)1/2 and the alluvial–bedrock transition s1(t) = − 2λab(νt)1/2 with time.

4. Limit solutions
In the limit Rab → 1, (3.8b) requires that the alluvial–bedrock transition be set

at x → −∞, i.e. λab → ∞. Substituting this limit into (3.8a) generates the following
equation for a finite value of λsh:

2λ2
sh

α

α − β
+

λshπ
1
2 (1 + erf(λsh))

e−λ2
sh + π

1
2 λsh(1 + erf(λsh))

− 1 = 0. (4.1)

This limit solution corresponds to fixing the alluvial–bedrock transition at x = − ∞
for all time t � 0 and tracking the movement of the shoreline into an ocean with a
fixed level. A similarity solution specifically for this limit case has been previously
developed by Capart et al. (2007), and we note that (4.1) corresponds to the fixed sea-
level solution presented in this work: compare (4.1) with (57) in Capart et al. (2007).
In the limit Rab → 0 there are two possible solutions. From (3.8) it is easy to see that
a trivial solution of zero movement of the shoreline and alluvial–bedrock transition
results for the cases in which Rab → 0 via q0 → 0 (with ν and β fixed) or β → ∞ (with ν

and q0 fixed). The first condition corresponds to zero sediment delivery to the system
and the second to the case of an infinitely deep ocean that removes all sediment
supplied without forming a sediment prism. A non-trivial solution, however, exists
when Rab → 0 via ν → ∞ (with β and q0 fixed). This limit does indeed set λab → 0 and
λsh → 0, but on multiplying both sides of (3.8) by ν it is noted that (λabν

1/2) → 0 and
(λshν

1/2) →
√

q0/2γ . Hence, for this case, although the alluvial–bedrock transition is
fixed at x =0 for all time, the shoreline moves according to

s2 =

√
2q0t

γ
. (4.2)

The geometry of this problem simply involves a submarine sediment wedge with a
horizontal fluvial surface coinciding with sea level and a foreset slope α prograding
along the bedrock slope β . In this case, (4.2) can be readily derived from a simple
mass balance. Indeed, the result in (4.2) matches the result obtained from the general
geometric model of Kim & Muto (2007) under the assumption of a horizontal fluvial
surface and no sea-level rise.
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Figure 2. The solution space for the moving boundary parameters in (3.10) in the
field-relevant case in which Rsh = γ /β = 1.

5. The solution space
For field conditions the foreset slope, α, is typically much greater than the bedrock

slope, β , and the shoreline slope ratio Rsh ≈ 1. Hence the physical solution space
(λab, λsh) can be characterized by plotting the solutions of (3.8) against 0<Rab < 1
while keeping the shoreline slope ratio fixed at Rsh = 1. This plot is shown in figure 2.
As a companion to this result the plots of the derivatives dλab/dRab and dλsh/dRab

are given in figure 3. The latter plot indicates the sensitivity of the moving boundary
trajectories to changes in the value of the alluvial–bedrock slope ratio Rab. As
Rab increases the movement of the alluvial–bedrock transition becomes increasingly
sensitive to changes in Rab, while the shoreline trajectory becomes less sensitive. For
Rab < 0.2 the movement of the shoreline is more sensitive than the movement of
the alluvial–bedrock transition. The situation reverses above Rab ∼ 0.2: the alluvial–
bedrock transition is more sensitive to changes in Rab than the shoreline. The results
in figures 2 and 3 have an important consequence for the interpretation of the
stratigraphic record. With an appropriate definition of the diffusivity (e.g. Swenson
et al. 2000) the alluvial–bedrock slope ratio can be written as a function of the
characteristic sediment type (gravel or sand), the water unit discharge qw and the
sediment unit discharge q0, all key environmental parameters. Hence, in inferring past
environmental changes in field sites at which the alluvial–bedrock slope ratios have
Rab > 0.2, the alluvial–bedrock transition is a more sensitive ‘signal recorder’ than
the shoreline. The reverse is true if Rab < 0.2. Both cases are possible in the field.
We note, for example, that stratigraphic records in the Gulf of Mexico (Anderson &
Fillon 2004) indicate alluvial–bedrock slope ratios in the range 0.2 <Rab < 0.8, while
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Figure 3. Sensitivity of the moving boundary trajectories to changes in the value of the
alluvial–bedrock slope ratio Rab .

basins bounded by steep normal faults (e.g. Crowell 2003) would have vanishingly
small values of Rab.

6. Comparison with experiment
We turn next to data from the experimental flume set-up at Nagasaki University,

Japan, reported in Parker & Muto (2003), Muto & Swenson (2005, 2006), Kim & Muto
(2007) and Swenson & Muto (2007), to provide experimental values to compare with
the similarity solution given by (3.1) and (3.8). The experiments involved a narrow
open-ended flume, 0.02 m wide, 4.3 m long and 1.3 m deep, immersed inside a larger
tank (figure 4). Both tank and flume contained fresh water. A weir placed at the
downstream end of flume, above the tank water level, ensured a constant water depth
in the flume. Separate water and sediment (quartz sand with uniform 0.2 mm grain
diameter and a density ρ =2598 kg m−3) fluxes were mixed in a funnel and delivered
to the upstream end of the flume. The sediment was transported down the flume
as bed load with a typical water depth of ∼1 mm. The inclination of the flume
floor (the bedrock slope β), the unit sediment discharge q0(mm2 s−1) and unit water
discharge qw(mm2 s−1) were varied to provide the nine sets of experimental conditions
summarized in table 1. Since the channel width was much greater than the water
depth the Reynolds number for the flow in the flume, upstream of the shoreline,
could be calculated as Re = ρqw/μ. From table 1 this gives Reynolds numbers in
the range 189 <Re < 879; appealing to open channel flow, this suggests that the flow
in the experiments was in the laminar or transitional regimes. The flow velocities
upstream of the shoreline ranged between 189 and 879 mm s−1. There was rapid
deceleration when the flow reached and moved downstream of the shoreline, leading
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qw (mm2 s−1) q0 (mm2 s−1) β

Run 1 878.65 42.80 0.1705
Run 2 733.10 42.80 0.1705
Run 3 579.10 42.80 0.1705
Run 4 562.25 42.80 0.2294
Run 5 335.45 42.80 0.2294
Run 6 232.15 42.80 0.2294
Run 7 229.95 13.46 0.1705
Run 8 220.45 13.46 0.2294
Run 9 188.75 42.80 0.2294

Table 1. Experimental set-up conditions.

Water level in flume
Sediment +

 water 

Flume flo
or

Water level in tank
Weir

Figure 4. Schematic of experimental flume.

to sediment deposit on to the submarine wedge. As noted previously this sediment
was redistributed by avalanche processes such that a wedge with a constant angle
of repose was maintained. Beyond a few millimetres of the shoreline there was no
notable disturbance of the water surface.

For each experimental condition, high-resolution photographs, taken every 20 s,
detailed the evolution of the sediment prism. Digital analysis of these photographs
provided a record of the positions, measured from the original shoreline at x = 0,
of the alluvial–bedrock transition Lab , the shoreline Lsh and the intersection of the
foreset with the bedrock (the ‘toe’) Ltoe . In order to obtain analytical predictions for
the trajectories of the shoreline and alluvial–bedrock transition we need to know,
for a given system, the input sediment flux q0, the bedrock slope β , the porosity
of the deposit, the shoreline slope ratio Rsh = α/α − β > 1 and the alluvial–bedrock
slope ratio 0 < Rab = [q0/νβ] < 1. To make a valid comparison between analytical
predictions and experiments these constant parameters have to be determined from
measurements taken at a single time, which on subsequent use in the analytical
solution recover the experimental measurements through time. The values of q0 and
β are part of the experimental set-up conditions (see table 1). The porosity of the
deposited sediment was assumed to be 0.3; this value was chosen by comparing an
experimental final time image of the deposit area to the know sediment input. Since
the foreset slope is assumed linear, α =βLtoe/Ltoe − Lsh, the shoreline slope ratio is
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readily determined as

Rsh =
Ltoe

Lsh

. (6.1)

The estimation of the alluvial–bedrock slope ratio, however, is a little more involved.
First it is noted that for a small increment �s in the shoreline movement the volume
of sediment deposited offshore is given by �sLtoeβ . In contrast, on assuming that the
curvature of the fluvial surface is large, the volume deposited on the fluvial surface
can be approximated as �sLabβ . In this way, the sediment flux at the shoreline can
be expressed as the following fraction of the input sediment flux:

qsh = q0

Ltoe

Ltoe + Lab

. (6.2)

Further, we note that the average fluvial sediment flux on the fluvial surface (defined
as the product of diffusivity and average slope) can be written as a weighted average
of the input and shoreline fluxes, i.e.

ν
βLab

Lsh + Lab

= φq0 + (1 − φ)qsh, (6.3)

where 0 � φ � 1. On combining (6.2) with (6.3) and rearranging, we arrive at the
following estimate for the alluvial–bedrock slope ratio in terms of the experimental
measurement at a fixed point in time:

Rab =

(
Lab

Lsh+Lab

)
(

φ + (1 − φ) Ltoe

Ltoe+Lab

) . (6.4)

To be fully determined we need a choice for the weighting factor φ. The choice of
φ = 1 corresponds to assuming that the fluvial surface is linear, which contradicts
the assumption of a diffusive flux that would build a concave surface. The choice of
any other constant (e.g. φ = 0.5) will, in the limit of Lab → ∞, result in non-physical
values of Rab > 1. Hence, a choice of weighting that varies between 0 and 1 in the
physical limits of 0 <Lab < ∞ is needed. Here, based on assuming the weighting is
a function of the fractions of the shoreline and alluvial–bedrock lengths, we use the
choice

φ =
Lab

Lsh + Lab

. (6.5)

Table 2 reports the values of Rsh and Rab obtained from the experimental
measurements through (6.1), (6.4) and (6.5). These values, reported in terms of
the mean μR and the standard deviation σ , are obtained by making estimations at
each time step in the range 0.1tend < t < tend (tend is the total experimental run time);
in all cases the sample size exceeded 100. From knowledge of the behaviour of the
analytical solution it is known that predictions are relatively insensitive to changes
in the value of Rsh but, especially at values close to 1, sensitive to changes in the
alluvial–bedrock ratio Rab. As such, in comparing the analytical predictions with the
experimental measurements we use two realizations. While both use the mean value
of Rsh from table 2, the values for the alluvial–bedrock ratio Rab are set at μR ± 2σ .

The analytical predictions for the shoreline and alluvial–bedrock transition
trajectories obtained with the values in tables 1 and 2 are compared with the
experimental measurements in figures 5–7. For most of the runs, there is a close match
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Rab Rsh

μR σ μR σ

Run 1 0.6519 0.0109 0.6649 0.0321
Run 2 0.7232 0.0091 0.6621 0.0250
Run 3 0.8024 0.0085 0.6689 0.0407
Run 4 0.6560 0.0177 0.6765 0.0210
Run 5 0.8087 0.0066 0.6528 0.0132
Run 6 0.8729 0.0077 0.6531 0.0126
Run 7 0.8626 0.0079 0.6053 0.0251
Run 8 0.6644 0.0163 0.6404 0.0099
Run 9 0.9139 0.0036 0.6394 0.0174

Table 2. The mean and standard deviations of the alluvial–bedrock and shoreline slope
ratios obtained from experimental measurements.

0–200–400–600–800–1000 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

t (
s)

x (mm)

1 2 3

1 2 3

4 5 6 7

1 2 3 4 5 6 7 8 9 1m

1 2 3 4 5 6 7 8 9 1m

1 2 3 4 5 6 7 8 9
Diffusive071222B

1m

Figure 5. Experimental run 1. Predicted shoreline and alluvial–bedrock movements with time
for Rab = μR +2σ (continuous line) and Rab = μR −2σ (dashed line) versus positions extracted
from experimental images (open circles). The picture is the experimental image at time t = tend .
Superimposed on this image is the fluvial surface (white dots) given by the analytical solution
when Rab = μR .
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Figure 6. Experimental runs 2–5. Predicted shoreline and alluvial–bedrock movements with
time for Rab = μR + 2σ (continuous line) and Rab = μR − 2σ (dashed line) versus positions
extracted from experimental images (open circles).

between the analytical predictions and experimental measurements; in particular
the upper and lower bound analytical predictions encompass the experimental
measurements. In runs 6 and 9, however, there is a clear outward drift of the
alluvial–bedrock transition measurements. This discrepancy can be attributed to the
fact that these two runs correspond to the largest values of the alluvial–bedrock slope
ratio Rab, 0.8729 and 0.9139 (see table 2); from the above analysis we know when
this ratio is close to unity, small changes in its value can have a significant effect
on the movement of the alluvial–bedrock transition (see figure 3). This is verified on
noting that with small increases in the estimated value of Rab, obtained from (6.4), the
analytical solution is able to predict alluvial–bedrock transition movement in close
agreement with the measurement; e.g. figure 8 compares run 9 predictions when the
estimated Rab value is increased by 3 %.

In addition to the drifts noted above it may be observed that, at some instances, the
measured movement of the alluvial–bedrock transition is erratic. This is attributed
to the small angle of the sediment wedge at the alluvial–bedrock transition (see
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Figure 7. Experimental runs 6–9. Predicted shoreline and alluvial–bedrock movements with
time for Rab = μR + 2σ (continuous line) and Rab = μR − 2σ (dashed line) versus positions
extracted from experimental images (open circles).

photograph in figure 5). This feature makes the alluvial–bedrock transition region
sensitive to local perturbations in sediment flux, leading to a loss in resolution of the
exact position in the digital image.

Another factor that affects the comparisons between the solution and the experiment
is the choice of porosity; the dependence of the moving boundaries on the porosity
is given by 1/

√
(1 − n). In particular, we note that an increase in porosity from

the current value of n= 0.3 to n= 0.4 expands the envelope of the alluvial–bedrock
transition and the shoreline in figures 5–7 by ∼ 7 %.

7. A comment on sea-level rise
Under the assumption that sea level changes as the square root of time and is

bounded from above by rate of the shoreline movement, an accounting of the sea-
level variation can be readily incorporated in the closed-form similarity solution
presented here. This prescription for sea-level rise, first used by Capart et al. (2007) in
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Figure 8. A large change in run 9 alluvial–bedrock transition predictions can be induced
by a small increase in alluvial–bedrock slope ratio Rab . Dashed line is the prediction of the
alluvial–bedrock transition with original value Rab =0.9139 (table 2); solid line denotes the
predictions with a 3 % increase (Rab = 0.9413); and symbols signify experiments.

their single moving boundary model, does not however lead to any significant physical
changes over the behaviour of the solution with a constant sea level. In particular,
the common case of shoreline transgression during sea-level rise cannot be attained.

8. Conclusions
The main objective of this paper has been to study the solution to a moving

boundary problem arising from the study of the long-term evolution of the coastal
sedimentary prism. In keeping with previous work, this problem can be viewed as a
generalized version of the well-known Stefan melting problem. The interesting feature
here is the appearance of two moving boundaries, the alluvial–bedrock transition and
the shoreline. The closed-form similarity solution for this dual moving boundary
problem shows that the movement of the alluvial–bedrock transition becomes
increasingly sensitive to environmental parameters (sediment type, sediment discharge
and water discharge) as the ratio of the alluvial to bedrock slope increases. In
particular, the analytical solution indicates that when the alluvial–bedrock slope ratio
exceeds 0.2, a condition encountered in the field, determination of these parameters
from preserved deposits is better done using the trajectory of the alluvial–bedrock
transition than that of the shoreline, despite the emphasis on the latter in the earth-
science literature.

The relatively simple nature of the problem studied has also allowed the use of
experiments in a small laboratory flume to compare physical measurements with
the analytical solution. Using estimation of solution parameters obtained from
experimental measurements taken at single time, the analytical solution is able to
recover the measured movements of the shoreline and alluvial–bedrock transition
through time.

Clearly the problem studied here is also amenable to numerical solution, perhaps
through using variations of the enthalpy method (Voller et al. 2006) or smooth particle
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hydrodynamics (SPH; Monaghan, Huppert & Worster 2005). While such solutions
may not retain the precision or elegance of the analytical solution presented here,
they will allow for the generation of solutions of more general problems, e.g. problem
in multiple dimensions with arbitrary imposed changes in sea level.

Appendix. Argument for assuming a linear diffusion representation for the
sediment flux

A key assumption in the diffusion model of sediment bed-load transport is that the
line flux of sediment, qs , at any location on the fluvial surface, is proportional to the
local slope S = ∂h/∂x of the sediment–water interface, i.e. qs = −ν∂h/∂x, where ν is
termed the ‘fluvial diffusivity’ (Paola et al. 1992). For completness, it is worthwhile to
summarize the assumptions embodied in this relationship; Paola et al. (1992) provide
a rigorous derivation of these ‘diffusive’ fluvial morphodynamics. We consider length
scales l >Lbw , where Lbw = h/S is the backwater length scale and h the average
flow depth. In this case, the momentum balance reduces to the familiar depth-slope
product, τ = ghS, where τ is the kinematic bed shear stress (dimensions of [L2T −2]).
Equivalently, the shear stress can be related to the average flow velocity U through
a typical quadratic drag relationship, τ =Cf U 2, where Cf is a friction coefficient.
Combining these two relationships and allowing for the fact that in general only
a fraction β (0 <β � 1) of the fluvial surface is covered with flowing water, i.e.
channelized, we arrive at

τ 3/2 = β−1gqw

√
Cf S, (A 1)

where qw = Uh is the depth-integrated water flux. Note in a laboratory flume the
water discharge qw is a constant. A constant value for qw can also be assumed for
field settings, provided tributary input is minimal, a common feature in depositional
systems.

In fully turbulent field settings, the friction coefficient Cf (A 1) is a weak
(logarithmic) function of relative roughness and for present purposes can be taken to
be approximately constant. In contrast, in small-scale laboratory flume settings the
flow is often laminar to transitional, and so the friction coefficient is a function of
the flow conditions. In particular, for a slot-like flume of constant width w, with a
fully wetted surface (β =1) and shallow flow depth h � w, the friction coefficient is a
function of the grain diameter d and Reynolds number Re = ρqw/μ, i.e. Cf = f (Re, d).

There are two ways to progress from (A 1). First, consider a bed-load relation, such
as the well-known Meyer-Peter & Muller (1948) formula, that can be written in the
form

q∗
s = K(τ∗ − τ∗c)

3/2, (A 2)

where q∗
s = qs/d

√
g(sg − 1)d is dimensionless sediment flux; K is a constant

(typically ∼ 8); sg is the specific gravity (sg = ρs/ρ ∼ 2.65); τ∗ = τ/g(sg − 1)d is the
dimensionless bed shear stress (the Shields number); and τ∗c is the dimensionless
critical shear stress at which bed-load transport is initiated. Two limiting cases
are of interest here. For bed-load-dominated rivers with weak banks, which in
the field generally means gravel-bed rivers, the channel typically self-adjusts by
widening to keep the bed shear stress slightly above critical, i.e. τ∗ =(1 + ε)τ∗c.
The mechanistic justification for this is presented in Parker (1978), and further
analysis and field evidence are presented in Parker et al. (2007). In this case (A 2)
becomes q∗

s = K((ε/1 + ε)τ∗)
3/2. Alternatively, as discussed in Dade & Friend (1998)

and Parker et al. (1998), for most sand-bed and finer grained rivers the bed shear
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stress substantially exceeds the critical value, i.e. τ∗ 
 τ∗c. In that case, (A 2) is modified
to q∗

s =Kτ
3/2
∗ . Similarly, at the laboratory scale, where bed slopes are relatively large,

e.g. S ∼ 0.1–0.2, the bed shear stress is significantly larger than the critical shear stress.
Consider, for example, the following representative values taken from the experiments
reported in this work: sand particle diameter ds = 0.2 mm, fluvial slope in the range
0.065 <S < 0.211 and flow depth h =1.5 mm. In this scenario the critical stress for
motion is 7 to 21 times smaller than the stress applied on the bed surface (Ponce
1989, pp. 549–552). Hence in each of the above noted field and experimental settings
the critical shear stress in (A 2) can be absorbed as a constant in the flux relationship
or ignored altogether to arrive at, on combining (A 1) and (A 2), a linear relationship
between the sediment flux and the local slope. More generally, we note that for any
case in which a channel self-adjusts (e.g. via bank erosion) or is otherwise constrained
to maintain a constant value of dimensionless shear stress τ∗, any sediment-flux
relation of the form gives, with (A 2), a linear relationship between sediment flux and
slope. For the specific scenarios above, the fluvial diffusivity ν has the form

ν =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

K
√

Cf

β(sg − 1)
qw, field-scale, sand or finer,

K
√

Cf

β(sg − 1)

(
ε

1 + ε

)3/2

qw, field-scale, gravel,

K

(sg − 1)
(f (Re, d))1/2qw, slot–flume.

Fluvial diffusivity is most sensitive to the water supply (qw) in the system. Typically, qw

is assumed constant in field settings; i.e. tributary input is neglected; in experimental
systems, qw is a constant (upstream) input. The key point is that the sediment flux
varies linearly with bed slope in both field- and laboratory-scale systems.

This work was supported by the STC program of the National Science Foundation
via the National Center for Earth-surface Dynamics under the agreement number
EAR-0120914. The authors would also like to thank Kyle Straub for discussions
related to the values of the alluvial–bedrock slope ratio in the stratigraphy of the
Gulf of Mexico.

REFERENCES

Anderson, J. B. & Fillon, R. H. (Ed.) 2004 Late Quaternary Stratigraphic Evolution of the Northern
Gulf of Mexico Margin . Society for Sedimentary Geology.

Capart, H., Bellal, M. & Young, D. L. 2007 Self-similar evolution of semi-infinite alluvial channels
with moving boundaries. J. Sediment. Res. 77, 13–22.

Crank, J. 1984 Free and Moving Boundary Problems . Oxford University Press.

Crowell, J. C. (Ed.) 2003 Evolution of Ridge Basin, Southern California: An Interplay of
Sedimentation and Tectonics . Geological Society of America.

Dade, W. B. & Friend, P. F. 1998 Grain size, sediment-transport regime and channel slope in
alluvial rivers. J. Geol. 106, 661–675.

Kim, W. & Muto, T. 2007 Two autogenic response of alluvial–bedrock transition to base-level
variation: experiment and theory. J. Geophys. Res. 112, F03S14. doi:10.1029/2006JF000561.

Lai, S. Y. J. & Capart, H. 2007 Two-diffusion description of hyperpycnal deltas. J. Geophys. Res.
112, F03005. doi:10.1029/2006JF000617.



Similarity solution for a dual moving boundary problem 443

Marr, J. G., Swenson, J. B., Paola, C. & Voller, V. R. 2000 A two-diffusion model of fluvial
stratigraphy in closed depositional basins. Basin Res. 12, 381–398.

Meyer-Peter, E. & Muller, R. 1948 Formulas for bed-load transport. In Second Meeting of the
Intl Association for Hydraulic Structures Research , Stockholm, Sweden.

Monaghan, J. J., Huppert, H. E. & Worster, M. G. 2005 Solidification using smoothed particle
hydrodynamics. J. Comput. Phys. 206, 684–705.

Muto, T. & Swenson, J. B. 2005 Large-scale fluvial grade as a nonequilibrium state in
linked depositional systems: Theory and experiment. J. Geophys. Res. 110, F03002.
doi:10.1029/2005JF000284.

Muto, T. & Swenson, J. B. 2006 Autogenic attainment of large-scale alluvial grade with steady
sea-level fall: an analog tank–flume experiment. Geology 34, 161–164.

Paola, H C., Heller, P. L. & Angevine, C. L. 1992 The large-scale dynamics of grain-size variation
in alluvial basins. Part 1. Theory. Basin Res. 4, 73–90.

Paola, C. & Voller, V. R. 2005 A generalized Exner equation for sediment mass balance. J. Geophys.
Res. 110, F04014. doi:10.1029/2004JF000274.

Parker, G. 1978 Self-formed straight rivers with equilibrium banks and mobile bed. Part 2. The
gravel river. J. Fluid Mech. 89, 127–146.

Parker, G. & Muto, T. 2003 one-dimensional numerical model of delta response to rising sea-level.
In Proceedings of the Third IAHR Symposium, River, Coastal and Estuarine Morphodynamics
(ed. A. Sánchez-Arcilla & A. Bateman), pp. 558–570, IAHR.

Parker, G., Paola, C., Whipple, K. X. & Mohrig, D. C. 1998 Alluvial fans formed by channelized
fluvial and sheet flow. Part 1. Theory. J. Hydraul. Engng 124, 985–995.

Parker, G., Wilcock, P. R, Paola, C., Dietrich, W. E. & Pitlick, J. 2007 Physical basis for
quasi-universal relations describing bankfull hydraulic geometry of single-thread gravel bed
rivers. J. Geophys. Res. 112, F04005. doi:10.1029/2006JF000549.

Ponce, V. M. 1989 Engineering Hydrology, Principles and Practices . Prentice Hall.

Posamentier, H. W., Allen, H. W., James, D. P. & Tesson, M. 1992 Forced regressions in a sequence
stratigraphic framework: concepts, examples, and sequence stratigraphic significance. AAPG
Bull. 76, 1687–1709.

Sommerfield, C. K., Ogston, A.S., Mullenbach, B. L., Drake, D.E., Alexander, C. R., Nittrouer,

C. A., Borgeld, J. C., Wheatcroft, R. A. & Leithold, E. L. (Ed.) 2007 Continental-Margin
Sedimentation: Transport to Sequence Stratigraphy. Blackwell.

Swenson, J. B. & Muto, T. 2007 Response of coastal plain rivers to falling relative sea-level:
allogenic controls on the aggradational phase. Sedimentology 54, 207–221.

Swenson, J. B., Voller, V. R., Paola, C., Parker, G. & Marr, J. G. 2000 Fluvio-deltaic
sedimentation: a generalized stefan problem. Eur. J. Appl. Math. 11, 433–452.

Voller, V. R. 1997 A similarity for the solidification of multicomponent alloys. J. Heat Mass
Transfer 40, 2869–2877.

Voller, V. R., Swenson, J. B., Kim, W. & Paola, C. 2006 An enthalpy method for moving boundary
problems on the earths surface. Intl J. Heat and Fluid Flow 16, 641–654.

Voller, V. R., Swenson, J. B. & Paola, C. 2004 An analytical solution for a Stefan problem with
variable latent heat. Intl J. Heat Mass Transfer 47, 5387–5390.

Worster, M. G. 1986 Solidification of an alloy from a cooled boundary. J. Fluid Mech. 167, 481–501.


